Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
BMC Cancer ; 24(1): 516, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654221

RESUMO

BACKGROUND: Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS: The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS: Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION: In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.


Assuntos
Biglicano , Fibroblastos Associados a Câncer , Neoplasias Colorretais , Aprendizado de Máquina , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/metabolismo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Prognóstico , Biglicano/metabolismo , Biglicano/genética , Proliferação de Células , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino , Movimento Celular , Microambiente Tumoral
2.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982607

RESUMO

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Assuntos
Glicocálix , Sindecana-1 , Sindecana-1/metabolismo , Glicocálix/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sindecana-2/metabolismo , Biglicano/metabolismo , Glipicanas/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Anti-Inflamatórios/metabolismo
3.
Exp Dermatol ; 33(1): e14969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967213

RESUMO

Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/ß-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/ß-catenin signalling pathway and could be a potential treatment target for hair loss diseases.


Assuntos
Folículo Piloso , beta Catenina , Camundongos , Animais , Folículo Piloso/metabolismo , beta Catenina/metabolismo , Camundongos Nus , Biglicano/metabolismo , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/genética , Alopecia/metabolismo , Regeneração/fisiologia , Proliferação de Células
4.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37840262

RESUMO

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Telócitos , Feminino , Humanos , Biglicano/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Lumicana/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endométrio , Telócitos/metabolismo
5.
Matrix Biol ; 123: 48-58, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793508

RESUMO

In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Proteoglicanos Pequenos Ricos em Leucina , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/genética , Decorina/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Sinais (Psicologia) , Sulfato de Ceratano/metabolismo , Biglicano/genética , Biglicano/metabolismo , Matriz Extracelular/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446002

RESUMO

Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Humanos , Agrecanas/metabolismo , Cartilagem Articular/metabolismo , Decorina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Biglicano/metabolismo , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Doenças das Cartilagens/metabolismo , Lectinas Tipo C/metabolismo
7.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460872

RESUMO

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Células Mieloides/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
8.
J Orthop Res ; 41(10): 2238-2249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132501

RESUMO

The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing. Contrary to our hypothesis, decorin knockdown did not affect tendon healing. However, when biglycan was knocked down, either alone or coupled with decorin, tendon modulus was increased relative to wild-type mice, and this finding was consistent among all induction timepoints. At 6 weeks postinjury, we observed increased expression of genes associated with the extracellular matrix and growth factor signaling in the biglycan knockdown and compound decorin-biglycan knockdown tendons. Interestingly, these groups demonstrated opposing trends in gene expression as a function of knockdown-induction timepoint, highlighting distinct temporal roles for decorin and biglycan. In summary, this study finds that biglycan plays multiple functions throughout tendon healing, with the most impactful, detrimental role likely occurring during late-stage healing. Statement of clinical importance: This study helps to define the molecular factors that regulate tendon healing, which may aid in the development of new clinical therapies.


Assuntos
Tendões , Cicatrização , Animais , Camundongos , Biglicano/genética , Biglicano/metabolismo , Decorina , Proteínas da Matriz Extracelular/metabolismo , Camundongos Knockout , Tendões/fisiologia , Cicatrização/fisiologia
9.
J Biochem Mol Toxicol ; 37(8): e23381, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128782

RESUMO

Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Biglicano/genética , Biglicano/metabolismo
10.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37013819

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Adulto , Animais , Humanos , Camundongos , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Biglicano/metabolismo , Calcinose/metabolismo , Células Cultivadas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Peixe-Zebra
11.
Cancer Res ; 83(10): 1725-1741, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067922

RESUMO

Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM. In a syngeneic GBM mouse model, spatial transcriptomics revealed that numerous extracellular matrix (ECM) molecules, including biglycan, were elevated in areas infiltrated with brain tumor-initiating cells (BTIC). Single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing showed that ECM molecules were differentially expressed by GBM cells based on their differentiation and cellular programming phenotypes. Exogeneous biglycan or overexpression of biglycan resulted in a higher proliferation rate of BTICs, which was associated mechanistically with low-density lipoprotein receptor-related protein 6 (LRP6) binding and activation of the Wnt/ß-catenin pathway. Biglycan-overexpressing BTICs developed into larger tumors and displayed mesenchymal phenotypes when implanted intracranially in mice. This study points to the spatial heterogeneity of ECM molecules in GBM and suggests that the biglycan-LRP6 axis could be a therapeutic target to curb tumor growth. SIGNIFICANCE: Characterization of the spatial heterogeneity of glioblastoma identifies regulators of brain tumor-initiating cells and tumor growth that could serve as candidates for therapeutic interventions to improve the prognosis of patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Biglicano/genética , Biglicano/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Análise Espacial , Proliferação de Células , Microambiente Tumoral
12.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047781

RESUMO

BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.


Assuntos
Proteínas Associadas aos Microtúbulos , Atrofia Muscular Espinal , Humanos , Biglicano/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica , Atrofia Muscular Espinal/genética , Mutação , Músculo Esquelético/metabolismo
13.
PLoS One ; 18(3): e0282176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36972253

RESUMO

New breast cancer biomarkers have been sought for better tumor characterization and treatment. Among these putative markers, there is Biglycan (BGN). BGN is a class I small leucine-rich proteoglycan family of proteins characterized by a protein core with leucine-rich repeats. The objective of this study is to compare the protein expression of BGN in breast tissue with and without cancer, using immunohistochemical technique associated with digital histological score (D-HScore) and supervised deep learning neural networks (SDLNN). In this case-control study, 24 formalin-fixed, paraffin-embedded tissues were obtained for analysis. Normal (n = 9) and cancerous (n = 15) tissue sections were analyzed by immunohistochemistry using BGN monoclonal antibody (M01-Abnova) and 3,3'-Diaminobenzidine (DAB) as the chromogen. Photomicrographs of the slides were analysed with D-HScore, using arbitrary DAB units. Another set (n = 129) with higher magnification without ROI selection, was submitted to the inceptionV3 deep neural network image embedding recognition model. Next, supervised neural network analysis, using stratified 20 fold cross validation, with 200 hidden layers, ReLu activation, and regularization at α = 0.0001 were applied for SDLNN. The sample size was calculated for a minimum of 7 cases and 7 controls, having a power = 90%, an α error = 5%, and a standard deviation of 20, to identify a decrease from the average of 40 DAB units (control) to 4 DAB units in cancer. BGN expression in DAB units [median (range)] was 6.2 (0.8 to 12.4) and 27.31 (5.3 to 81.7) in cancer and normal breast tissue, respectively, using D-HScore (p = 0.0017, Mann-Whitney test). SDLNN classification accuracy was 85.3% (110 out of 129; 95%CI = 78.1% to 90.3%). BGN protein expression is reduced in breast cancer tissue, compared to normal tissue.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , Feminino , Humanos , Biglicano/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Estudos de Casos e Controles , Redes Neurais de Computação
14.
Clin Transl Med ; 13(2): e1189, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772945

RESUMO

INTRODUCTION: Cancer-associated fibroblasts (CAFs) are correlated with the immunotherapy response. However, the culprits that link CAFs to immunotherapy resistance are still rarely investigated in real-world studies. OBJECTIVES: This study aims to systematically assess the landscape of fibroblasts in cancer patients by combining single-cell and bulk profiling data from pan-cancer cohorts. We further sought to decipher the expression, survival predictive value and association with immunotherapy response of biglycan (BGN), a proteoglycan in the extracellular matrix, in multiple cohorts. METHODS: Pan-cancer tumor bulks and 27 single-cell RNA sequencing cohorts were enrolled to investigate the correlations and crosstalk between CAFs and tumor or immune cells. Specific secreting factors of CAFs were then identified by expression profiling at tissue microdissection, isolated primary fibroblasts and single-cell level. The role of BGN was further dissected in additional three bulk and five single-cell profiling datasets from immunotherapy cohorts and validated in real-world patients who have received PD-1 blockade using immunohistochemistry and immunofluorescence. RESULTS: CAFs were closely correlated with immune components. Frequent crosstalk between CAFs and other cells was revealed by the CellChat analysis. Single-cell regulatory network inference and clustering identified common and distinct regulators for CAFs across cancers. The BGN was determined to be a specific secreting factor of CAFs. The BGN served as an unfavourable indicator for overall survival and immunotherapy response. In the real-world immunotherapy cohort, patients with high BGN levels presented a higher proportion of poor response compared with those with low BGN (46.7% vs. 11.8%) and a lower level of infiltrating CD8+ T cells was also observed. CONCLUSIONS: We highlighted the importance of CAFs in the tumor microenvironment and revealed that the BGN, which is mainly derived from CAFs, may be applicable in clinical practice and serve as a therapeutic target in immunotherapy resistance.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Transcriptoma/genética , Fibroblastos Associados a Câncer/metabolismo , Biglicano/genética , Biglicano/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral/genética
15.
Stem Cell Res ; 66: 103009, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599284

RESUMO

Meester-Loeys syndrome (MRLS) is an X-linked syndromic form of thoracic aortic aneurysm and dissection. Here, we report an iPSC line (BBANTWi009-A) of a boy carrying a hemizygous BGN mutation (chrX:153502980-153530518del, GRCh38) causing MRLS. iPSCs were generated from dermal fibroblasts by reprogramming with the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). The generated iPSCs showed a normal karyotype, expressed pluripotency markers, were differentiated into the three germ layers and carried the original genotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Masculino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Diferenciação Celular , Genótipo , Fibroblastos/metabolismo , Biglicano/genética , Biglicano/metabolismo
16.
Int J Biol Sci ; 19(2): 465-483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632455

RESUMO

Peritoneal metastasis (PM) is most frequent in gastric cancer (GC) and cancer-associated fibroblasts (CAFs) play a critical role in this process. However, the concrete mechanism of crosstalk between CAFs and cancer cells in PM of GC remains unclear. Microarray sequencing of GC focus and PM lesions was performed, and biglycan (BGN) was screened for further study. Clinically, BGN expression was higher in GC tissues than adjacent normal tissues, and high expression correlated with poor prognosis. In vitro experiments demonstrated that BGN promoted tumor progression and the transformation of mesothelial cells (MCs) into cancer-associated fibroblasts like cells (CAFLCs). In turn, CAFLCs-derived fibroblast activation protein (FAP) facilitated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells. GC-derived BGN combined with toll like receptor 2 (TLR2)/TLR4 on MCs to activate the NF-κB pathway and promote the transformation of MCs into CAFLCs by the recovery experiment, coimmunoprecipitation assay, nuclear and cytoplasmic protein extraction assay. CAFLCs-derived FAP could activate the JAK2/STAT3 signaling pathway in GC. Finally, activated STAT3 promoted BGN transcription in GC, resulting in a BGN/FAP-STAT3 positive feedback loop. Taken together, mutual interaction between tumor cells and activated MCs mediated by a BGN/FAP-STAT3 positive feedback loop facilitates PM of GC and provides a potential biomarker and therapeutic target for GC metastasis.


Assuntos
Biglicano , Neoplasias Peritoneais , Fator de Transcrição STAT3 , Neoplasias Gástricas , Humanos , Biglicano/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Neoplasias Peritoneais/secundário , Transdução de Sinais/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Retroalimentação Fisiológica
17.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675295

RESUMO

Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-ß activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-ß binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-ß-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-ß at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-ß stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-ß through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1ß gene expression was markedly decreased following A2AR antagonist treatment in TGF-ß-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.


Assuntos
Fibroblastos , Proteínas Proto-Oncogênicas c-akt , Humanos , Biglicano/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fibrose , Adenosina/farmacologia , Adenosina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas
18.
Liver Int ; 43(2): 500-512, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371672

RESUMO

BACKGROUND: Biglycan (BGN) is a small leucine-rich proteoglycan that participates in the production of excess extracellular matrix (ECM) and is related to fibrosis in many organs. However, the role of BGN in liver fibrosis remains poorly understood. This study aimed to investigate the role and mechanism of BGN in liver fibrosis. METHODS: Human liver samples, Bgn-/0 (BGN KO) mice and a human LX-2 hepatic stellate cells (HSCs) model were applied for the study of experimental fibrosis. GEO data and single-cell RNA-seq data of human liver tissue were analysed as a bioinformatic approach. Coimmunoprecipitation, immunofluorescence staining, western blotting and qRT-PCR were conducted to identify the regulatory effects of BGN on heat shock protein 47 (HSP47) expression and liver fibrosis. RESULTS: We observed that hepatic BGN expression was significantly increased in patients with fibrosis and in a mouse model of liver fibrosis. Genetic deletion of BGN disrupted TGF-ß1 pathway signalling and alleviated liver fibrosis in mice administered carbon tetrachloride (CCl4 ). siRNA-mediated knockdown of BGN significantly reduced TGF-ß1-induced ECM deposition and fibroblastic activation in LX-2 cells. Mechanistically, BGN directly interacted with and positively regulated the collagen synthesis chaperon protein HSP47. Rescue experiments showed that BGN promoted hepatic fibrosis by regulating ECM deposition and HSC activation by positively regulating HSP47. CONCLUSION: Our data indicate that BGN promotes hepatic fibrosis by regulating ECM deposition and HSC activation through an HSP47-dependent mechanism. BGN may be a new biomarker of hepatic fibrosis and a novel target for disease prevention and treatment.


Assuntos
Biglicano , Proteínas de Choque Térmico HSP47 , Cirrose Hepática , Animais , Humanos , Camundongos , Biglicano/metabolismo , Fibrose , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo
19.
Clin Transl Med ; 12(11): e973, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377223

RESUMO

BACKGROUND: Colon cancer is the second leading cause of death worldwide. Exploring key regulators in colon cancer metastatic progression could lead to better outcomes for patients. METHODS: Initially, the transcriptional profiles of 681 colonrectal cancer (CRC) cases were used to discover signature genes that were significantly correlated with colon cancer metastasis. These signature genes were then validated using another independent 210 CRC cases' transcriptomics and proteomics profiles, and Kaplan-Meier regression analyses were used to screen the key regulators with patients' survival. Immunohistochemical staining was used to confirm the biomarkers, and transit knockdown was used to explore their implications on colon cancer cells migration and invasion abilities. The impact on the key signalling molecules in epithelial-mesenchymal transition (EMT) process that drive tumour metastasis was tested using Western blot. The response to clinical standard therapeutic drugs was compared to clinical prognosis of key regulators using an ROC plotter. RESULTS: Five genes (BGN, THBS2, SPARC, CDH11 and SPP1) were initially identified as potential biomarkers and therapeutic targets of colon cancer metastasis. The most significant signatures associated with colon cancer metastasis were determined to be BGN and THBS2. Furthermore, highly expression of BGN and THBS2 in tumours was linked to a worse survival rate. BGN and THBS2 knockdown significantly reduced colon cancer cells migration and invasion, as well as down-regulating three EMT-related proteins (Snail, Vimentin and N-cadherin), and increasing the proliferation inhibitory effect of 5-fluorouracil, irinotecan and oxaliplatin treatment. CONCLUSIONS: CRC metastatic progression, EMT phenotypic transition and poor survival time have been linked to BGN and THBS2. They could be utilized as potential diagnostic and therapeutic targets for colon cancer metastatic patients with a better prognosis.


Assuntos
Neoplasias do Colo , Humanos , Biglicano/metabolismo , Biglicano/farmacologia , Biomarcadores , Movimento Celular/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , Prognóstico
20.
Eur Cell Mater ; 44: 90-100, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189917

RESUMO

The acetabular labrum is a fibrocartilaginous ring surrounding the acetabulum and is important for hip stability and contact pressure dissipation through a sealing function. Injury of the labrum may contribute to hip-joint degeneration and development of secondary osteoarthritis. Understanding how extracellular matrix (ECM) production and remodelling is regulated is of key importance for successful tissue restoration. The present study hypothesised that physiological stretching enhanced the metabolic activity and altered the ECM gene expression in labrum cells. Primary bovine labrum cells were physiologically stretched for up to 5 d. 24 h after the last stretch cycle, changes in metabolic activity were measured using the PrestoBlue™ HS Cell Viability Reagent and ECM gene expression was examined using the quantitative polymerase chain reaction method. Targets of interest were further investigated using immunofluorescence and enzyme-linked immunosorbent assay. Metabolic activity was not affected by the stretching (0.9746 ± 0.0614, p > 0.05). Physiological stretching upregulated decorin (DCN) (1.8548 ± 0.4883, p = 0.002) as well as proteoglycan 4 (PRG4) (1.7714 ± 0.6600, p = 0.029) and downregulated biglycan (BGN) (0.7018 + 0.1567, p = 0.008), cartilage oligomeric matrix protein (COMP) (0.5747 ± 0.2650, p = 0.029), fibronectin (FN1) (0.5832 ± 0.0996, p < 0.001) and spondin 1 (SPON1) (0.6282 ± 0.3624, p = 0.044) gene expression. No difference in PRG4 and DCN abundance or release could be measured. The here identified mechanosensitive targets are known to play relevant roles in tissue organisation. Therefore, physiological stretching might play a role in labrum tissue homeostasis and regeneration.


Assuntos
Cartilagem Articular , Fibronectinas , Animais , Biglicano/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Bovinos , Decorina/metabolismo , Matriz Extracelular , Fibronectinas/genética , Fibronectinas/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...